BTeV: Status and physics prospects

Kevin Stenson — Vanderbilt University

18th International Workshop on Weak Interactions and Neutrinos Christchurch, New Zealand January 21–26, 2002

Talk Outline

- I. Physics Motivation
- II. Detector Description
- III. Physics Prospects
- IV. Project Status
 - V. Summary

Quick Recap of Beauty Physics Theory

CKM matrix and triangles:

- $\lambda \approx 0.22$ and $A \approx 0.8$
- All Standard Model CP violation comes from η so CP violation from different particles and different decays are all related and thus CP violation is a good place to search for physics beyond the Standard Model
- The primary beauty physics CKM triangle is:

Prime goal is measuring α, β, and γ in many ways
Measuring the side lengths is also very important

• Measuring other independant angles (χ, χ') also crucial

• Finding the "right" decays is a thriving cottage industry

Physics	Decay Mode
$\sin(2\alpha)$	$B^0 \to \rho \pi \text{ or } B^0 \to \pi \pi$
$\cos(2\alpha)$	$B^0_{\ o} \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$
$\operatorname{sign}(\sin(2\alpha))$	$B^0 \to \rho \pi \& B^0 \to \pi^+ \pi^-$
$\sin(\gamma)$	$B_s \to D_{s_o}^{\pm} K^{\mp}$
$\sin(\gamma)$	$B^- \to \overline{D}^0 K^-$
$\sin(\gamma)$	$B^0 \to \pi^+ \pi^- \& B_s \to K^+ K^-$
$\sin(2\chi)$	$B_s \to J/\psi \eta', J/\psi \eta$
$\sin(2\beta)$	$B^0 \to J/\psi K_S$
$\cos(2\beta)$	$B^0 \to J/\psi K^0, K^0 \to \pi \ell \nu$
$\cos(2\beta)$	$B^0 \to J/\psi K^{*o} \& B_s \to J/\psi \phi$
x_s (side length)	$B_s \to J/\psi K^*, D_s K$
$ V_{cb} $ (side length)	$B^0 \rightarrow D^{*+} \mu^- \nu$
$ V_{ub} $ (side length)	$B^- \to \rho^0 \mu^- \nu$

- $\sin(2\beta)$ is measured; α and γ are much more difficult.
- CP violation measurements generally have:
 - -Suppressed decays \Rightarrow low rates
 - Many contributions (from different Feynman diagrams) to particular final state \Rightarrow complicated theoretically
 - -Interferences between contributions \Rightarrow complicated theoretically
 - Mixing of neutral states \Rightarrow complicated experimentally
 - Time dependent effects \Rightarrow complicated experimentally

The BTeV Experiment

BTeV is designed to make a high-statistics study of decays of hadrons containing b and/or c quarks and is scheduled to start in 2008.

Basic idea

- Two-arm spectrometer in C0 region of Tevatron
- Forward coverage ($10 \text{ mrad} < \theta < 300 \text{ mrad}, 1.9 < \eta < 5.3$)

BTeV Detector Layout

Design Justifications

- Forward produced \Rightarrow higher momentum
 - Significant vertex separation between production and decay
 - Less sensitive to multiple Coulomb scattering
 - Excellent lifetime resolution
 - $-\, {\rm Stellar}$ particle ID of $\mu,\,\pi,\,K\!\!,\,p,\,e,\,\gamma$
- Hadron colliders \Rightarrow more statistics and particles
 - $-20,000 \ b\overline{b}$ per second at Tevatron compared to 10/s at $\mathcal{L}=10^{34} \,\mathrm{cm}^{-2}\mathrm{s}^{-1} \ e^+e^-$ collider
 - $-p\bar{p}$ produces B_s , b-baryons, B_c , Ξ_{cc} , Ω_{ccc} , Ξ_{bc}

Design Challenges

- \bullet Minimum bias (u,d,s) backgrounds are produced ${\sim}750$ times more often than b events
 - Need trigger to reduce background rate and good DAQ to handle event rate
 - High radiation, especially near beam

Pixels are key to trigger & experiment

- 30 million 50 × 400 μ m² n^+np^+ type pixels
- 10×10 cm² transverse with 1.2×1.2 cm² beam hole
- \bullet 30 *x-y* doublets separated by 4.25 cm
- FPIX2 (amp/ADC/readout) fabricated with intrinsically rad-hard .25 μ m CMOS process & bump bonded to pixels
- 2-D spacepoint reduces tracking combinatorics
- Beam test of pixels in Fall, 1999
 - Measured noise: 200–400 e^-
 - $-\operatorname{Signal}$ of non-shared track >20,000 e^-
 - ADC + charge-sharing algorithm \Rightarrow excellent resolution

Forward tracking for momentum and projection

- 7 stations/arm with silicon strips inside $(24 \times 24 \text{ cm}^2)$ and straw tubes outside
- Straws: 4 mm diameter, 3 views/station, 3 layers/view
- \bullet Silicon strips: 100 $\mu {\rm m}$ pitch with 3 views/station
- 100K channels each of straws (TDC) and strips (latch)
- \bullet Momentum resolution better than 1%

EM calorimeter for e-ID & γ/π^0 reconstruction

- 20,000 PbWO₄ crystals (rad hard CMS development)
- 2.72×2.72 cm² in front and 2.8×2.8 cm² in back
- $22 \text{ cm} \log = 25 \text{ radiation lengths} = 1 \text{ interaction length}$
- GEANT energy resolution $\sim 0.55\% \oplus 1.6\%/\sqrt{E}$
- \bullet Readout with photomultiplier tubes

Muon detector for μ -ID and trigger

- \bullet Two 1 m magnetized iron filters per arm
- 74K 1 cm diameter proportional tubes (latch readout)
- Arranged in octants \Rightarrow reduce occupancy near beam
- 3 stations/arm, 4 views (r-u-v-r)/station, 2 layers (picket fence)/view, 192 tubes/layer
- Gas: $Ar/CF_4/CO_2 (88\%/10\%/2\%) \Rightarrow fast (90 \,\mu m/ns)$

Hadron Particle ID is crucial (RICH):

- C_4F_{10} gas provides $\pi/K/p$ separation from 9–70 GeV
- \bullet Considering C₅F₁₂ liquid for particles in 3–9 GeV range
- \bullet Detect gas photons with 300,000 channels of hybrid photo-diodes
- Detect liquid photons with 10,000 channels of photomultiplier tubes

10

10⁻²

Trigger/Data Acquisition (DAQ)

Vertex Trigger

- Algorithm
 - Reconstruct tracks using pixel information
 - Verticize tracks to find production vertex
 - Look for tracks which miss production vertex
 - Make cut (currently ≥ 2 tracks miss production vertex (a) by $> 6\sigma$)

• Implementation

- Use Field Programmable Gate Arrays (FPGA) to time-order and cluster hits
- Use Digital Signal Processors (DSP) to reconstruct tracks, verticize, and obtain primitive information

Examples of new physics searches

New phases can be introduced from new physics:

In SM, $B^0 \to J\!/\psi K_S^0$ and $B^0 \to \phi K_S^0$ both measure $\sin 2\beta$ but in MSSM they measure $\sin 2(\beta + \theta_D)$ and $\sin 2(\beta + \theta_D + \theta_A)$, respectively. BTeV can collect 200 tagged $B^0 \to \phi K_S^0$ events/year.

The rate and structure of $B^0 \to K^{*0} \ell^+ \ell^-$

- Rare decays are good window for new physics
- Compare branching ratio with SM (BR $\approx 1.5 \times 10^{-6}$)
- \bullet Zero of forward-backward asymmetry of dilepton mass (A_{FB}) well defined in SM
- Other theories (some SUSY and SUGRA models) can have different (or no) zero
- BTeV can collect 4400 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ events/10⁷ s

Measuring the CKM angle χ

- $\chi \equiv \arg\left(-\frac{V_{cs}^*V_{cb}}{V_{ts}^*V_{tb}}\right)$ is independent from α, β , and γ
- Need to check SM predictions of:

$$\sin \chi = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{\sin \beta \sin \gamma}{\sin (\beta + \gamma)} = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\sin \gamma \sin \beta + \gamma}{\sin (\beta)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{\sin \beta \sin \beta + \gamma}{\sin (\gamma)}$$

Comparing side lengths to angles

- CKM unitarity triangle side lengths are given by CKM matrix elements (e.g. V_{ub}), using semileptonic decays
- CKM unitarity triangle angles are given by α , β , and γ
- Discrepancies indicate new physics

 α measurement study

Tree diagram

Penguin diagram

- Need decay of form $b \rightarrow du\bar{u}$
- Traditionally $B^0 \rightarrow \pi^+ \pi^-$ has been the favored decay for $\sin(2\alpha)$
- $\Upsilon(4S)$ results \Rightarrow "Penguin pollution" large
- \bullet In this case, extracting α requires isospin analysis
- For $B^0 \rightarrow \pi^+\pi^-$ this requires measuring $B^0 \rightarrow \pi^0\pi^0$ which has smaller branching ratio and very difficult (impossible at BTeV) to reconstruct
- A solution in 3-body modes?

$B^0 \to \rho \pi \to \pi \pi \pi$

• Three decays: $B^0 \rightarrow \rho^+ \pi^-, B^0 \rightarrow \rho^- \pi^+, B^0 \rightarrow \rho^0 \pi^0$

• Requires time-dependent Dalitz plot tagged analysis

- Dalitz plot analysis measures contributions of resonances as well as their interferences
- The lifetime of each B^0 is determined to allow time-dependent measurement
- "Tag" B flavor to distinguish B^0 from $\overline{B^0}$
- Opposite side tagging tags the flavor of the B which we do not reconstruct by looking at signatures $(\mu/e/K/{\rm jet~charge})$
- Interferences can allow resolution of all ambiguities of α
- Snyder & Quinn find robust solutions with 2,000 background-free events

Quantity	$\rho^{\pm}\pi^{\mp}$	$ ho^0\pi^0$	30		
BR	2.8×10^{-5}	$\sim 5 \times 10^{-1}$	6		
Effic.	0.44%	0.36%	20		
Trigger effic.	50%	50%	M^2		
S/B	4.1	0.3	10		
Signal/year	8,700	$1,\!250$	10	24	
ϵD^2	0.10	0.10		Aller	
Tagged/year	870	125	0 10	20	30
				M_{+0}^{2}	

CKM and rare decay sensitivities

	BTeV-2arm	LHC-b	<i>b</i> -factory	$\mathcal{L} = 10^{36}$
	$10^7\mathrm{s}$	$10^7\mathrm{s}$	$500 {\rm fb}^{-1}$	$10^7\mathrm{s}$
$\sin 2\beta \ (B^0 \to J/\psi K^0_S)$	0.013	0.02	0.037	0.008
$\sin 2\alpha_{\rm eff} \ (B^0 \rightarrow \pi^+ \pi^-)$	0.05	0.05	0.14	0.032
$\alpha_{\rm eff} - \alpha \ (B^0 \! \rightarrow \! \pi^0 \pi^0)$			$<\!18^{\circ}$	$<7^{\circ}$
$\alpha (B^0 \rightarrow \rho \pi)$	10°			
$\gamma (B_s^0 \rightarrow D_s K)$	$\sim 7^{\circ}$	$\sim 10^{\circ}$		
$\gamma (B^- \rightarrow \overline{D^0} K^-)$	$\sim 10^{\circ}$	$\sim 10^{\circ}$	$\sim 20^{\circ}$	2.5°
$\sin 2\chi \ (B^0_s \rightarrow J/\psi \eta^{(\prime)})$	0.021			
$\mathcal{X}_{\mathcal{S}}(B^0_s \! \rightarrow \! D^+_s \pi^-)$	up to 75	up to 75		
$V_{ub} (B \rightarrow \rho \ell \nu)$?	?	2.3%	<1%
$Y(B^0 \to \mu^+ \mu^-)(8 \times 10^{-11})$	2 evt	2 evt		
$Y(B_s^0 \to \mu^+ \mu^-)(10^{-9})$	10 evt	11 evt		
$Y(B \to X_s \mu^+ \mu^-)(6 \times 10^{-6})$	7.2k evt		.3k evt	6k evt
$Y(\!B\!\to\!K^*\mu^+\mu^-)(2\!\times\!10^{-6})$	4.4k evt		.12k evt	2.4k evt
$Y(B \to K^* e^+ e^-)(2 \times 10^{-6})$	4.4k evt		.12k evt	2.4k evt

For a 1-arm BTeV, errors will increase by $\sim \sqrt{2}$ and yields will decrease by ~ 2 .

BTeV project status and future

- BTeV received PAC & Fermilab approval in June, 2000
- Budget constraints prompted negotiations between Fermilab, DOE, & BTeV which resulted in the following goals (contingent on passing reviews):
 - Support for BTeV R&D
 - Most BTeV construction money for the rescoped (one arm) detector in 2005-2007
 - Parasitic data-taking can begin for debugging and commissioning as soon as major components are available for installation
 - Start physics data taking with one arm in 2008
 - Until CDF or DØ end, will have low intensity collisions or wire target to bring up systems
 - To reduce cost, existing magnets will be used for the BTeV interaction region
- PAC will review new plan in April, 2002 followed by an outside "P5"-style review in Fall, 2002

The BTeV Outlook

- The era of beauty physics has only just begun
- The *B* factories (and CDF & DØ) should obtain:
 - $-\sin(2\beta)$ from $J/\psi K_s^0$
 - $-V_{ub}$ (V_{cb}) from semileptonic decays $B \rightarrow \rho \mu \nu$ ($B \rightarrow D^{(*)} \mu \nu$)
 - Rare decays (probably limits if Standard Model)
 - $-x_s$ from B_s mixing (if Standard Model)
 - Charm mixing and rare decays (limits if Standard Model)
- In 2008 many questions will still be open
- BTeV can answer these questions by measuring: $-\sin(2\beta)$ to ± 0.013 using $B^0 \rightarrow J/\psi K_S$
 - $-\alpha$ to $\pm 10^{\circ}$ using $B^0 \rightarrow \rho \pi$
 - $-\gamma$ to $\pm 7^{\circ}$ using $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - $-\sin(2\chi)$ to ± 0.021 using $B_s \rightarrow J/\psi \eta^{(\prime)}$
 - Rare decay rates and distributions
 - Semileptonic decays of B^0 , B^+ , Λ_b , B_s , ...
 - Properties of B_c , Ξ_{cc} , Ω_{cc} , Ξ_{bc} , Ω_{bc} , Ω_{ccc}
 - Charm mixing and rare decays

• The BTeV features which make this possible are:

- The massive statistics available at a hadron collider
- A flexible and open trigger which allows us to look for things not even dreamed up during design
- Excellent particle ID of $e,\!\mu,\!\pi,\!K,\!p$
- Great π^0 and γ reconstruction
- $-\operatorname{Superb}$ vertex and mass resolution